The symmetric rank-one quasi-Newton method is a space-dilation subgradient algorithm

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Symmetric Rank-one Quasi Newton Method for Non-negative Matrix Factorization

As we all known, the nonnegative matrix factorization (NMF) is a dimension reduction method that has been widely used in image processing, text compressing and signal processing etc. In this paper, an algorithm for nonnegative matrix approximation is proposed. This method mainly bases on the active set and the quasi-Newton type algorithm, by using the symmetric rank-one and negative curvature d...

متن کامل

A symmetric rank-one quasi-Newton line-search method using negative curvature directions

We propose a quasi-Newton line-search method that uses negative curvature directions for solving unconstrained optimization problems. In this method, the symmetric rank-one (SR1) rule is used to update the Hessian approximation. The SR1 update rule is known to have a good numerical performance; however, it does not guarantee positive definiteness of the updated matrix. We first discuss the deta...

متن کامل

A new quasi-Newton pattern search method based on symmetric rank-one update for unconstrained optimization

This paper proposes a new robust and quickly convergent pattern search method based on an implementation of OCSSR1 (Optimal Conditioning Based Self-Scaling Symmetric Rank-One) algorithm [M.R. Osborne, L.P. Sun, A new approach to symmetric rank-one updating, IMA Journal of Numerical Analysis 19 (1999) 497–507] for unconstrained optimization. This method utilizes the factorization of approximatin...

متن کامل

Convergence of quasi-Newton matrices generated by the symmetric rank one update

Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence ...

متن کامل

Convergence of quasi-Newton matrices generated by the symmetric rank one update

Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Operations Research Letters

سال: 1986

ISSN: 0167-6377

DOI: 10.1016/0167-6377(86)90010-6